Deep, Narrow Sigmoid Belief Networks Are Universal Approximators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep, Narrow Sigmoid Belief Networks Are Universal Approximators

In this note, we show that exponentially deep belief networks can approximate any distribution over binary vectors to arbitrary accuracy, even when the width of each layer is limited to the dimensionality of the data. We further show that such networks can be greedily learned in an easy yet impractical way.

متن کامل

Deep Belief Networks Are Compact Universal Approximators

Deep Belief Networks (DBN) are generative models with many layers of hidden causal variables, recently introduced by Hinton et al. (2006), along with a greedy layer-wise unsupervised learning algorithm. Building on Le Roux and Bengio (2008) and Sutskever and Hinton (2008), we show that deep but narrow generative networks do not require more parameters than shallow ones to achieve universal appr...

متن کامل

Deep Narrow Boltzmann Machines are Universal Approximators

We show that deep narrow Boltzmann machines are universal approximators of probability distributions on the activities of their visible units, provided they have sufficiently many hidden layers, each containing the same number of units as the visible layer. Besides from this existence statement, we provide upper and lower bounds on the sufficient number of layers and parameters. These bounds sh...

متن کامل

Multilayer feedforward networks are universal approximators

This paper rigorously establishes thut standard rnultiluyer feedforward networks with as f&v us one hidden layer using arbitrary squashing functions ure capable of upproximating uny Bore1 measurable function from one finite dimensional space to another to any desired degree of uccuracy, provided sujficirntly muny hidden units are available. In this sense, multilayer feedforward networks are u c...

متن کامل

Uncertain Systems are Universal Approximators

Uncertain inference is a process of deriving consequences from uncertain knowledge or evidences via the tool of conditional uncertain set. Based on uncertain inference, uncertain system is a function from its inputs to outputs. This paper proves that uncertain systems are universal approximators, which means that uncertain systems are capable of approximating any continuous function on a compac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neural Computation

سال: 2008

ISSN: 0899-7667,1530-888X

DOI: 10.1162/neco.2008.12-07-661